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EXPLICIT SCHEMES OF THE LOCATION METHOD I N  THE PROBUM 
OF SUPERSONIC FLOWS AROUND A BLUNT BODY 

A. P. Kosykh, A. N. Minaylos 

ABSTRACT. Various schemes of the location method i n  computing 
supersonic flows around a blunt body are discussed and 
compared c i t i n g  references. Indirect  methods indicated 
low accuracies i n  the  computations and a comparison of com- 
putations using the  d i r ec t  method f o r  a l l  three schemes of 
the  in t eg ra l  r e l a t ion  method, the l i n e  method, and the  
location method indicated good concordance &f r e s u l t s  
obtained. 

1. The d i f f i c u l t i e s  i n  computing the s teady supersonic flow around two- L514 
dimensional blunt bodies s t e m  from the  fact t h a t  what is being solved is a system 

of mixed equations, as w e l l  as of de ta i led  parameters determining the  unknown 

boundary of t he  reference region i n  advance. These d i f f i c u l t i e s  increase 

s ign i f icant ly  with increase i n  the  number of nodes i n  the  reference gr id ,  

pa r t i cu la r ly  when passing t o  the  computation o f ' space  currentso 

From t h i s  point of view, locat ion methods have many advantages. In  these 

methods t i m e ,  t ,  is introduced as an independent var iable ,  and t h e  solut ion 

of the  s ta t ionary  problem is sought as the  l i m i t  i n  the nonstationary problem 

when t + OD. 

bol ic  type, Therefore, despi te  t he  increase i n  the  number of independent 

var iables ,  t he  solut ion is simpler than tha t  obtained f o r  equations of t he  

mixed type, h increase i n  the  number of space var iables  w i l l  not complicate 

the solut ion algorithm, i n  pr inc ip le ,  but t he  d i f f i c u l t i e s  i n  the  main are those 

The problem can be,described by a system of equations of the  hyper- L515 

- ---.--- 
stemming from the  increase i n  m e m a a d  machine t i m e  required. 

Various schemes of t he  location method are described i n  references [l-43, 
f o r  example. These schemes are stiAl far from perfected,  and t h i s  is par t icular-  

l y  so i n  t he  case of th ree  space variables.  There are two fac to r s ,  bas ica l ly ,  

t ha t  determine t h e  improvement i n  the  effect iveness  of location methods, while 

re ta ining necessary accuracy: 

* Numbers i n  the  margin indicate  pagination i n  t he  foreign text, 
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(a) the  poss ib i l i t y  of making the  

computations using an approximate, 

specif ied coverage of i n i t i a l  

data  assigned f o r  t = 0; 

(b) reduction i n  the  t i m e  required 

f o r  t he  computation of the  var iant .  

The first f ac to r  is a t t r ibu tab le  t o  

what follows. 

Widely used today is a gradual tran- 

s i t i o n  from an avai lable  var iant  t o  an 

unknown one, using the parameters of t h e  

problem (shape of t h e  body, Mach number, angle of a t t ack ,  and the  l ike) .  This 

procedure, while yielding many subsidiary r e s u l t s ,  takes a great deal of t i m e ,  

and is unsatisfactory.  It is used pr inc ipa l ly  because there  is no proof of the 

existence,  or singleness of a so lu t ion ,  and can be explained, i n  prac t ice ,  by 

the fact t h a t  very of ten it is impossible t o  obtain a solut ion from the approxi- 

m a t e ,  specif ied i n i t i a l  da ta  ( tha t  is, not from an intermediate solut ion) .  

is desirable  t o  create methods and means of making the  computation from the 

approximate i n i t i a l  data ,  without requiring the obtaining of a complex algorithm 

f o r  these data, o r  using another, even more approximate method, 

It 

Reduction i n  var iant  computation t i m e  is associated with the  se lec t ion  

of computational schemes such t h a t  t he  t i m e  s t ep ,  7, can be increased, o r  with 

the  se lec t ion  of schemes with an optimal number of operations per  t i m e  s tep.  

The fact is t h a t  straightforward exp l i c i t  schemes with order of accuracy O ( T )  

(scheme C51, f o r  example) are e i t h e r  too approximate, o r  location takes place 
2 too slowly when these schemes are used. 

( in  C41, f o r  example) provide a more rapid locat ion,  but the  volume of computa- 

t i ons  per s t e p  is greater by a f ac to r  of 6 t o  8 ( i n  t h e  case of two space 

var iables)  and greater by a 'factor of %2 t o  14 ( fo r  th ree  space var iables)  

than i n  the  scheme i n  C53. 
is t h e  accuracy ~f the  final r e su l t ,  something t h a t  w i l l  depend on scheme se- 

lection. I 

Schemes of an order of accuracy O ( 7  1 

Also t o  be remembered when seeking optimal schemes 
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2. Results in c3] indicate that the scheme in C51 will yield approximate 
- 

results in the case of. a direct c&&BLation (lldiffusell shock wave). 

the method in this latter to compute the Prandtl-Meyer flow (reference grid 

30 x 30 nodes), the flow around a wedge (30 x 116 nodes), and around a flat step 
(58 x 50 nodes). The computations c%nfirmed the conclusions with respect to the 

ineffectiveness of this method arrived at in C41. 
density distribution, obtained from the computation made for the Prandtl-Meyer 

flow, and the exact density distribution (dashed). The disturbed region en- 

compasses virtually the entire region in which the computation was made. 

The shock wave front is greatly diffuse in the case of the flow around the 

wedge. 

angle is not dependent on time t in the location process, but with decrease in 

T (that is, with increase in the coefficient of artificial viscosity) moves 

downstream from the angular point, and is associated, therefore, with the intro- 

duction of viscosity. Figure 2 shows the step velocity distribution at the 

end of the computation (complete location of the flow was not obtained, and this 

was true in C31 as well). The dashed curve is the plot of the results of the 

We used 

Compared in Figure 1 are the 

Practically speaking, the position of the sonic point beyond the step 

L516 

cornputation made using the integral 

Figure 2, 

relations method "obtained in C61 

3. We used the location method to 

investigate a broader class of schemes 

in which the shock wave was given as a 

discontinuity and was the boundary of 

the region for which the computation was 

to be made. 

The method proposed in C41 was used. 

The following schemes were used to 

compute the interior points of the region 

when the transition was made to a new time layer: 

(1) scheme (L) with artificial viscosi$y depending on the parameter a: 
I I 

(1 1 k+i  h A A h k A '  
g,,, - a g m  .a + (1 - a)'/& k m  ti,* + gm-i,* + gm,n+i + gm,n-tj +(a') m , n ~ ;  

when u = 0 the scheme converts to that in c53; 

(2) scheme (L - W): 
3 



Here the subscripts correspond to the number of space variable nodes, the super- 

scripts to time variable nodes. The prime with the subscript denotes a partial 

derivative. The magnitudes of g 1 are determined through the main system of 

equations, and the second derivatives 

main system withnrespect to all independent variables. Central differences 

were used to approximate the derivatives with respect to the space variables. 

t 
I t ,  by the differentiation of the ' gtt 

4. There are two reasons for the oscillations that can occur in the inter- 

instability of the finite- nal field during the solution of the problem: 

difference schemes; and the physical process of location. The correct selection 

of step 7 will eliminate the first. The second arises as a result of shock 

wave motion. Because of the approximate assignment of the initial field, the 

shock wave will move to and *from the body during the computation. This oscilla- 

tion isdamped (Figure 31, and causes the internal field to oscillate. 
compressed gas waves thus formed are reflected from the body, return to the shock 

wave', and can destroy it, The shock wave becomes sawtoothed, and the computation- 

al accuracy is reducedc 

The 

Introduction of artificial viscosity (a # 1) significantly reduces the 
amplitude of wave oscillations, or even makes the process aperiodic (when 

a = 0) (see Figure 3 ) .  At the same time the accuracy of the final results 

decreases. For example, the distance 6 of the shock wave from the sphere when 

Mer, = 10 and a = 0 cannot be determined with any more accuracy than 12%. 

loss of accuracy in the results in [31 are attributable primarily to the intro- 

0 .  
The 

duction of artificial viscosity (a = 0) in the corgputation of internal field 

points, and not only by the presence of the diffuse shock wave front. 

Accordingly, the scheme in C51 rapidly damps the'oscillations in the 
internal field, but yields more approximate results. 

to gradually increase the parameter 01 during the computation. 

It is therefore desirable 

Scheme (L - W) is highly accurate when the oscillation process is relatively 
..- 

weak, but the volume of computations at the point for which they are being made 

is great. 

The procedure of "freezing'l the position of the shock wave can be used to L517 

avoid the onset of oscillatibns in the internal 'field attributable to shock 
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I -.-.- L - W 6 X 2  
- - - - - L - - w ;  1 2 x 4  

-0.1360 6.153 3.18* , 4 .1354 1, 6.153 1 '3.08' . 

Figure 3. 

Scheme 

a-0  . 
a=O 
C%=O 
a = 814 
a = V I a  
a = 81/~, 
a=1 
L-w 
L-w 

In tegra l  method 
scheme I 
scheme 111, 

TmLE 1. SPHERE9 M, = 10. 

Number 
of 

nodes 

' 6 x 2  
12x4 
24x23 
6 x 2  
6 x 2  ' 
6 x 2  
6 x 2  

. 6 x 2  
12x4 

I1 appr 
1x5 

I l;h:no., 
' -0.1004 
1-0.1136 
-0.1143 
-0.1245 
-0.1307 
-0.1355 
-0.1370 
-0.1375 

"-0.136't 

6,762 
' 6.458 

6.524 
6.312 

.6.224 
6.166 
6.151 
6.148 
6.\150 

3.609 I 

3.335 ' 

3.39s 
3.269 
3.220 
3.205 
3.208 

I 3.197.. 
3,198 

Bernoulli constant 
i n  the  flow f i e l d  

0.98'r6-1.0i5 
0.939 1-1.023 
0.9520--1 .025 

' 0.9996-1.019 
0.9958--1.014 
0.9992-1. 010 
0.9999-1.WQ 
0.9981--1.009 . 
0.9982--1.005 - .  . 

Note: *data obtained by extrapolation. 

wave motion, The wave, a t  some t ime ' in t e rva l  S t  (Figure 4 ) ,  is taken as f ixed ,  

and its posi t ion is what it would be a t  the  t i m e  t he  in te rva l  begins. The 

veloci ty  a t  which the  wave is moving is taken as equal t o  zeroc Once the  

f i e l d  is s t ab i l i zed ,  t h i s  flow is equivalent t o  the  flow i n  a duct,  on one w a l l  

of which (on the body) the  no-flow condition is s a t i s f i e d ,  but i n  which gas  is 

supplied through the  o ther  ( the shock wave) i n  accordance with a l a w  correspond- 

ing to t he  Rankine-Hugoniot e o n ~ l i t i o n s ~  The length of t h e  "freezingt1 in te rva l  
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should be such t h a t  the  osc i l l a t ions  caused by shock wave motion are damped i n  

t h e  in te rna l  f i e l d  ( the number of s teps  i n  an in te rva l  is 20 t o  30, approximately). 

"Freezingff r e s u l t s  i n  more rapid locat ion,  pa r t i cu la r ly  when the i n i t i a l  posi t ion 

of the  wave d i f f e r s  l i t t l e  from the  t r u e  posi t ion,  and the  i n i t i a l  in te rna l  f i e l d  

is given as approximate. 

!'freezing," t he  dashed l i n e  t h a t  with Iffreezing." 

"he s o l i d  l i n e  i n  Figure 4 shows wave motion without 

The dash-dot curve corresponds 

to t he  l i m i t .  

._ 
0 

. .  ~. . 
Figure 4. 

I 

. .  

3c %4 -I 

Figure 5 .  

Y 
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1.2 ' ,  

I ,  

,I 
t 
? 

I 

0.8 

Distributfon of parameters between wave L518 
and smooth body is close t o  l i nea r  f o r  large 

M,, and t h i s  corresponds t o  the  method w e  

adopted f o r  defining the  reference f i e l d .  

The reference f i e l d  is assigned more and more 

approximately with reduction i n  M,, and the 

amplitude of the osc i l l a t ion  of the shock wave _ I  

increases. "Freezingrfeffectiveness increases 

accordingly, This procedure w a s  more 

e f f ec t ive  a t  s m a l l  supersonic M, numbers. 

,5. Reference [71 pointed out t h a t  com- 

putations o f  t h e  flow around blunt bodies 

y i e ld  r e s u l t s  with a pressure d i s t r ibu t ion  

e r r o r  i n  excess of (It is known t h a t  

pressure on a body is a 'conservative character- 

ist ic,  and can be computed qu i t e  accurately.)  

The low accuracy can be explained by the  use 

of ind i rec t  methods. The comparison made i n  
>--- 
=-==\-, ---&&&J as w e l l  as i n  t h i s  paper, is  indicat ive 

of t he  good concordance of the  r e s u l t s  obtained 

'*' 1 by d i r ec t  methods. The comparison w a s  made 

far a l l  three  schemes of t he  in t eg ra l  r e l a t ion  

method, €or the  l i n e  method, and f o r  the 

location method. Flows over spheres and cylinders i n  the range of change i n  

M, numbers from 2 t o  10 w e r e  compared. 

case w a s  b e t t e r  than i n  the  f la t  case9 and b e t t e r  for large M, numbers than 

The concordance i n  the  misymmetrical 



f o r  lesser ones. The l a w  of d i s t r ibu t ion  of parameters between body and shock’ 

wave w a s  c lose t o  l i n e a r  f o r  large M, numbers. 

the  number of in te rna l  f i e l d  nodes w a s  s m a l l  (6 x 2, f o r  example), qu i te  

accurate r e s u l t s  w e r e  obtained, and t h e  solut ion w a s  r e l a t ive ly  insens i t ive  to 

increase i n  the  number of nodes i n  the  gr id  (see the  distance 6 

and shock wave, f o r  example, o r  the  r a t i o  of the densi ty  at  the  stagnation 

The r e su l t  was t h a t  even when 

between body 0 

TABLE 2. CYLINDER, M, = 3. 

Scheme Bernoulli constant i n  
the  flow f i e l d  6o Number of 

nodes 
- ~ - 7-p -- 

12x5 -0 6726 0.9475-1.037 
24x5 -0.6791 0.9573-1.010 

I V  24x11 -0.6901 0*9981-1.00’? 
IV 24x23 -0- 6953 009993-1.006 

L W  
I? 

Method of 4 rays -0 e 6988 
s t r a i g h t  l i n e s  

In tegra l  method 
scheme I I11 approxo -0.70p 

Figure 6, 
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Figure 7. Figure 8 .  

I 

point to the density in the incoming flow p S/p,, Table 1). 

reference points must be increased in order to reduce the M, numbers (payti- 

cularly in the case of a plane flow). The dependence of the position of the 

wave on the number of internal field nodes will be seen from Table 2 and 

The number of 0 

Figure 5. The results of the computations are very close to the data A, P. 

Bazahin and I. F. Chelysheva received by using the line method, and the integral 
relations method (schemes I and 111 from [SI), The differences in the positions 

of the shock waves were not in excess of 1% 

by 0. Me Belotserkovskiy [9] differs somewhat from that obtained using the 
location method and the line method (Figure 5). 
and density on the surface of a cylinder and the shock wave when M, = 3 ,  from 
data obtained using various methdb\!Sghe dashed durves in Figures 5 and 6 
are for the I11 approximation when the integral relations method was used 

(scheme I) [SI, and the dash-dot curves are for the lines and small circle 

method, and the location method. 

I 

The line on the cylinder obtained 

Figure 6 compares pressure 
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6, The flow around a profile with great change in surface curvature was 
~~+1)-0.04(~ +1) 2 I. 

0 
computed. 

The results of this computation (the solid curves) are compared with the data 

obtained by A. P. Bazzhin in 1963, using the first approximation of the 
integral relations method (the dotted lines), in Figure 7 and 8. Shock wave 

positions differ about 10%. 

on the body than it did wave position, except in the vicinity of the sonic 

points. 

The profile equation used was yo = +[1/2 4 ( 

The integral method yielded more precise parameters 

The y coordinate of the stagnation point differs by 2%. 

The author wishes to thank A. P. Baazhin, S. V. Pirogova, F. D. Popov, 

and I. F. Chelysheya for permission to compare the results of the computations 
made using other methods, and for their useful discussion of the paper. 

Submitted for publication 
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